15.6 C
New York
Friday, October 18, 2024

Nobel Prize in medicine honors 2 Massachusetts scientists for their discovery of microRNA

By DANIEL NIEMANN, MARIA CHENG and MIKE CORDER

STOCKHOLM (AP) — Two Massachusetts scientists won the Nobel Prize in physiology or medicine on Monday for their discovery of microRNA, tiny bits of genetic material that serve as on and off switches inside cells that help control what the cells do and when they do it.

If scientists can better understand how they work and how to manipulate them, it could one day lead to powerful treatments for diseases like cancer.

The work by Americans Victor Ambros and Gary Ruvkun is “proving to be fundamentally important for how organisms develop and function,” according to a panel that awarded the prize in Stockholm.

Dr. Ambros is from the University of Massachusetts Medical School; Dr. Ruvkun is a Massachusetts General Hospital (MGH) and Harvard Medical School investigator.

Ambros and Ruvkun were initially interested in genes that control the timing of different genetic developments, ensuring that cell types develop at the right time.

Their discovery ultimately “revealed a new dimension to gene regulation, essential for all complex life forms,” the panel said.

What is the Nobel Prize for?

RNA is best known for carrying instructions for how to make proteins from DNA in the nucleus of the cell to tiny cellular factories that actually build the proteins. MicroRNA does not make proteins, but helps to control what cells are doing, including switching on and off critical genes that make proteins.

Last year’s Nobel for medicine went to scientists who discovered how to manipulate one of those types of RNA, known as messenger RNA or mRNA, now used to make vaccines for COVID-19.

Ambros and Ruvkun’s revolutionary discovery was initially made in worms; they set out to identify why some kinds of cells didn’t develop in two mutant strains of worms commonly used as a research model in science.

“Their groundbreaking discovery revealed a completely new principle of gene regulation that turned out to be essential for multicellular organisms, including humans,” according to the citation explaining the importance of their work.

That mechanism has been at work for hundreds of millions of years and has enabled evolution of complex organisms, it said.

Ambros, currently a professor of natural science at the University of Massachusetts Medical School, performed the research at Harvard University. Ruvkun’s research was performed at Massachusetts General Hospital and Harvard Medical School, where he’s a professor of genetics.

Why does microRNA matter?

The study of microRNA has opened up approaches to treating diseases like cancer because it helps regulate how genes work in our cells, said Dr. Claire Fletcher, a lecturer in molecular oncology at Imperial College London.

Fletcher said there were two main areas where microRNA could be helpful: in developing drugs to treat diseases and in serving as possible indicators of diseases, by tracking microRNA levels in the body.

“If we take the example of cancer, we’ll have a particular gene working overtime, it might be mutated and working in overdrive,” said Fletcher. She said scientists might one day be able to use microRNA to stop such effects.

Source link

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

0FansLike
0FollowersFollow
0SubscribersSubscribe

Latest Articles